skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burton, Jonathan W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arynes are highly reactive and versatile intermediates for the functionalization of aromatic rings that are often generated using strong bases or fluoride sources, which, in some cases, can limit functional group tolerance. Here we demonstrate that triaryloxonium ions can be transformed into arynes through treatment with solid potassium phosphate at room temperature. A substantial range of functional group-bearing arynes, including 4,5-pyrimidynes, may be generated and trapped using cycloaddition reactions with high yields. Other arynophiles including nitrones, alkenes and azides are compatible with these conditions. Quantum computation in conjunction with an intramolecular kinetic isotope study is consistent with an elimination, unimolecular, conjugate base-like mechanism of elimination to form the aryne. These investigations demonstrate that the oxonium ion is a powerful electron-withdrawing group and a particularly effective leaving group. We anticipate that this study will stimulate further investigations into the synthetic utility of aryl oxonium ions. 
    more » « less
  2. Abstract The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen 1 , phosphorus 2 and sulfur compounds 3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited 4 . However, the stereochemistry of oxonium ions—compounds bearing three substituents on a positively charged oxygen atom—is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates 5,6 . There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion 7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol −1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre. 
    more » « less